Untersuchungen an Diazoverbindungen und Aziden, LII¹⁾

Stabile Azomethinimin-Dipole aus Diazoverbindungen und 3H-1,2,4-Triazol-3,5(4H)-dionen

Wolfgang Theis, Willi Bethäuser und Manfred Regitz *

Fachbereich Chemie der Universität Kaiserslautern, Erwin-Schrödinger-Straße, D-6750 Kaiserslautern

Eingegangen am 19. Dezember 1983

Die arylsubstituierten Diazoverbindungen 1 a - h reagieren mit den Triazoldionen 2a - c bei 20°C in Benzol unter Stickstoffverlust zu den stabilen Azomethinimin-Dipolen 4a - p. Ihr 1,3-dipolarer Charakter kommt sowohl in der Addition von Methanol und Ethanol $(4d - f \rightarrow 5a - f)$ als auch in Cycloadditionsreaktionen mit Acetylendicarbonsäure-dimethylester $(4d, e \rightarrow 6a, b)$ und Phenylisocyanat $(4d \rightarrow 7)$ zum Ausdruck. Bisdipole erhält man auf zwei verschiedenen Wegen: Entweder setzt man Bisdiazoverbindungen mit 4-Phenyl-3*H*-1,2,4-triazol-3,5(4*H*)-dion um (12a, b $+ 22a \rightarrow 13a, b$), oder man wandelt das Bistriazoldion 14 mit Diazoverbindungen (1a, c, d und i)in die Bisdipole 15a - d um. Dipolmomente, Molmassen, IR-, UV-, ¹H-NMR- und ¹³C-NMRspektroskopische Daten sind im Einklang mit den Dipolstrukturen.

Investigations on Diazo Compounds and Azides, LII¹⁾

Stable Azomethine Imine Dipoles from Diazo Compounds and 3H-1,2,4-Triazole-3,5(4H)-diones

The aryl-substituted diazo compounds $1\mathbf{a} - \mathbf{h}$ react with the triazolediones $2\mathbf{a} - \mathbf{c}$ at 20° C in benzene with loss of nitrogen to the stable azomethine imine dipoles $4\mathbf{a} - \mathbf{p}$. Their 1,3-dipolar character is revealed in the addition of methanol and ethanol $(4\mathbf{d} - \mathbf{f} \rightarrow 5\mathbf{a} - \mathbf{f})$ as well as in cycloaddition reactions with dimethyl acetylenedicarboxylate $(4\mathbf{d}, \mathbf{e} \rightarrow 6\mathbf{a}, \mathbf{b})$ and phenyl isocyanate $(4\mathbf{d} \rightarrow 7)$. Bisdipoles are obtained by two different ways: Either bisdiazo compounds are reacted with 4-phenyl-3*H*-1,2,4-triazole-3,5(4*H*)-dione $(12\mathbf{a}, \mathbf{b} + 22\mathbf{a} \rightarrow 13\mathbf{a}, \mathbf{b})$ or the bistriazoledione 14 is transformed into the bisdipoles $15\mathbf{a} - \mathbf{d}$ with diazo compounds $(1\mathbf{a}, \mathbf{c}, \mathbf{d}, \text{ and } \mathbf{i})$. Dipole moments, molecular weights, IR, UV, ¹H NMR, and ¹³C NMR spectroscopic data are in agreement with the dipole structures.

Die Reaktivität aliphatischer Diazoverbindungen gegenüber offenkettigen, akzeptorsubstituierten Azoverbindungen war Gegenstand zahlreicher Untersuchungen, in denen u.a. über die Bildung von Diaziridinen, 1,3,4-Oxadiazolinen, Diacylhydrazonen und Azomethinen berichtet wurde²⁾. Nur sehr spärlich ist dagegen unser Wissen über Reaktionen zwischen 4-substituierten 3H-1,2,4-Triazol-3,5(4H)-dionen, wie z. B. 2, mit zwangsläufig cis-ständigen Acylgruppen und Diazoverbindungen. In der vorliegenden Arbeit verfolgen wir die Bildung von Azomethinimin-Dipolen aus diesen Reaktionspartnern, die von Stickstoffentwicklung begleitet sein muß³⁾. Zu Beginn unserer Untersuchungen war lediglich bekannt, daß Diazodiphenylmethan⁴⁾ und 9-Diazo-9Hfluoren⁵⁾ mit 4-Phenyl-3H-1,2,4-triazol-3,5(4H)-dion (**2a**) zu stabilen Dipolen abreagieren.

Dipole 4

Setzt man die arylsubstituierten Diazoverbindungen 1a - h in Benzol bei Raumtemperatur mit 4-Phenyl-, 4-*p*-Tolyl- und 4-Methyl-3*H*-1,2,4-triazol-3,5(4*H*)-dion (2a - c) um, so lassen sich ausschließlich die farbigen Dipole 4a - p (70–91%) isolieren⁶. Die

eingesetzten Diazoverbindungen sind unter den Bedingungen der Triazoldion-Reaktion stabil, so daß man eine unmittelbare Beteiligung von 2 an der Stickstoffabspaltung annehmen muß; dies kann über eine Diazonium-Zwischenstufe gemäß 3 geschehen, die durch nucleophilen Diazoalkanangriff am elektrophilen Azostickstoff von 2 zustande kommt.

Zur Stabilität der Dipole – sie zersetzen sich erst bei Temperaturen $\geq 129^{\circ}$ C – trägt sicher auch die Tatsache bei, daß sowohl positives wie auch negatives Ladungszentrum durch Donor- bzw. Akzeptorsubstituenten (benachbarter Stickstoff bzw. CO-Gruppe) stabilisiert werden, was in den Grenzformeln $4\mathbf{A} - 4\mathbf{D}$ zum Ausdruck gebracht ist. Im systematischen Sinne stellen sie nach *Huisgen*⁷⁾ 1,3-Dipole mit interner Oktettstabilisierung dar ($4\mathbf{A} \leftrightarrow 4\mathbf{B}$), wobei man allerdings im strengen Sinne die Delokalisierung der negativen Ladung durch die Carbonylgruppe ($4\mathbf{C} \leftrightarrow 4\mathbf{D}$) außer Betracht lassen muß. Sehr viel mehr Diazoalkane als hier beschrieben reagieren mit 3H-1,2,4-Triazol-3,5(4H)-dionen nachweislich unter N₂-Verlust zu Dipolen, doch sind diese im allgemeinen nur isolierbar, wenn – wie hier – ein Diazoalkansubstituent eine Arylgruppe darstellt⁸). Letzteren muß demnach in den Dipolen 4 auch ein stabilisierender Einfluß zugebilligt werden. Es fällt auf, daß Dipole selbst dann noch stabil sind, wenn sie, wie in $4\mathbf{a} - \mathbf{c}, \mathbf{h}$ und **m**, als Zweitsubstituenten eine Acylgruppe am positiven Kohlenstoff besitzen.

Einen ersten Hinweis auf den Dipolcharakter der aus 1 und 2 erhaltenen Produkte gibt deren Farbe: Sie sind gelb, orange, rot oder violett (s. Tab. 1) und zeigen naturgemäß neben UV-Banden auch Absorptionen im sichtbaren Bereich (s. Tab. 2). Diese Eigenschaft wäre unvereinbar mit einer isomeren Diaziridinstruktur (**4B**, Ringschluß zwischen den Ladungszentren). Da die Elektronenstoßionisation zur massenspektrometrischen Molmassenbestimmung der Dipole ungeeignet ist, wurde diese mit korrektem Ergebnis modellhaft für **4d** mit Hilfe der "Desorptions Chemischen Ionisation (DCI)" durchgeführt⁹; ferner liegen für **4d**-**g** dampfdruckosmometrische Molmassenermittlungen vor, so daß dimere Strukturen ausgeschlossen werden können. Schließlich sprechen auch die nach dem Verfahren von *Hedestrand*¹⁰ in Dioxan für einige Azomethinimine bestimmten Dipolmomente (**4c**: 5.4, **4d**: 5.3, **4f**: 6.3, **4g**: 5.0, **40**: 7.5 D) für unseren Strukturvorschlag.

Einem interessanten Effekt begegnet man in den IR-Spektren (KBr) der Dipole. Relativ zu den Triazoldionen (**2a**: 1760, 1780; **2b**: 1766, 1784; **2c**: 1750, 1785 cm⁻¹) findet man intensive Absorptionen einerseits bei tieferen (1710 – 1731 cm⁻¹) anderesseits bei höheren Wellenzahlen (1772 – 1838 cm⁻¹) für die 3- bzw. 5-ständige CO-Gruppe (s. Tab. 2, dort weitere Absorptionen). Dies läßt erkennen, daß auch der Carbonylsauerstoff negative Ladung besitzt (vgl. **4C** \leftrightarrow **4D**) und N-1 als Elektronendonor für den positiven Kohlenstoff (**4B** \leftrightarrow **4C**) fungiert und damit die Carbonamid-Mesomerie verlorengeht. In den ¹H-NMR-Spektren von **4a** – **p** treten die erwarteten Resonanzen auf (s. Tab. 3), sie geben aber keine weiteren Aufschlüsse über die Bindungsverhältnisse der Dipole; wesentlich informativer sind dagegen deren ¹³C-NMR-Spektren (s. Tab. 3). Bei den Azomethinimin-Dipolen **4d**, **f**, **g** und **o** tritt der ursprüngliche Diazokohlenstoff bei $\delta = 149.6 - 159.3$ in Resonanz, also in dem für Azomethin-Kohlenstoffe typischen Bereich¹¹). Die Grenzformeln **4A** bzw. **4C** tragen also sehr wesentlich zur Beschreibung des Bindungszustandes bei. Zu tieferem Feld sind die entsprechenden Absorptionen von **4a** – **c**, **h** und **m** verschoben ($\delta = 161.0 - 188.1$), was sicher den am positiven Kohlenstoffzentrum stehenden Aroylgruppen zuzuschreiben ist. Auch diese Absorptionen liegen bei noch recht hohem Feld, wenn man etwa das Dimethylphenylcarbenium-Ion ($\delta = 256$)¹² zum Vergleich heranzieht. Schließlich absorbieren die Carbonylkohlenstoffe des Heteroringes der Azomethinimin-Dipole bei verschiedenem Feld ($\delta = 144.7 - 157.5$, s. Tab. 3); durch ihr unterschiedliches Relaxationsverhalten sowie verschiedene Signalintensitäten unterschieden sie sich deutlich von den Azomethinkohlenstoffen.

Reaktionen der Dipole 4

In vollem Einklang mit ihrem dipolaren Charakter addieren 4d - f glatt Methanol und Ethanol zu den Urazolen 5a - f (53 – 88%). Ihre IR-Spektren (KBr) zeigen breite NH-Absorptionen zwischen 3240 und 3450 cm⁻¹, die auch in den ¹H-NMR-Spektren (CDCl₃) auftauchen ($\delta = \approx 9-11$) und beim Deuterieren mit D₂O verschwinden (s. Tab. 5, dort weitere Daten).

Beispielhaft wurden einige Cycloadditionsreaktionen mit Dipolarophilen ausgeführt. So erhält man aus den Dipolen **4d** und **e** mit Acetylendicarbonsäure-dimethylester in siedendem Benzol die Spiroheterocyclen **6a** und **b**; unter den gleichen Bedingungen reagiert **4d** mit Phenylisocyanat zu 7.

Korrekte elementaranalytische Daten sowie passende spektroskopische Werte sind im Einklang mit der Konstitution der Spirocyclen (s. experimenteller Teil). Ein exemplarisch für **6a** aufgenommenes ¹³C-NMR-Spektrum zeigt den Spirokohlenstoff bei $\delta = 70.0$. Die zu 7 führende Orientierung von Dipol und Dipolarophil entspricht den

Polaritäten beider Partner (s. hierzu auch Lit.⁵⁾ sowie⁷⁾); sie läßt sich aber nicht exakt belegen.

Außerhalb der üblichen Norm vollzieht sich die Umsetzung von 4g mit überschüssigem Methylisocyanat: anstelle des erwarteten spirocyclischen Adduktes entsteht unzweifelhaft das bereits aus 1g und 2c erhaltene Azomethinimin 40.

Für den formalen Austausch von der Phenyl- gegen die Methylisocyanat-Einheit lassen sich zwei Wege diskutieren, zwischen denen keine Entscheidung getroffen wurde.

a) Dipol 4g zerfällt unter den thermischen Bedingungen in Phenylisocyanat und N-Isocyanatoimin 8, das seinerseits [3 + 2]-Cycloadditon mit Methylisocyanat zu 40 eingeht.

b) Dipol 4g addiert im anionischen Molekülteil Methylisocyanat zum dipolaren Intermediat 9, von dem dann Ringschluß und Phenylisocyanat-Freisetzung ausgehen.

Durchaus vergleichbare Reaktionen an anderen Systemen sind literaturbekannt: So findet man "Phenyl/Naphthyl-Austausch" beim Behandeln von 10 mit α -Naphthylisocyanat¹³) sowie "*tert*-Butyl/Phenyl-Austausch" bei der Umsetzung von 11 mit Phenylisocyanat¹⁴).

Bisdipole

Zur Herstellung von Bisazomethinimin-Dipolen bedienten wir uns zweier Prinzipien: Einmal wurden Bisdiazoverbindungen mit einem Monotriazoldion, zum andern ein Bistriazoldion mit Monodiazoverbindungen jeweils im Verhältnis 1:2 umgesetzt.

So erhält man aus den Bis(diazomethyl)benzolen 12a und b und 2a in Benzol bei 20° C in hohen Ausbeuten die orangeroten Bisdipole 13a und b.

Elementaranalytische und spektroskopische Daten (s. experimenteller Teil) stehen im Einklang mit den Dipolstrukturen. Interessanterweise tritt der Azomethinkohlenstoff im ¹³C-NMR-Spektrum (CDCl₃) der Bisdipole **13a** und **b** bei $\delta = 199.1$ auf, d.h. bei tieferem Feld als bei allen Monodipolen des Typs **4**; der Benzylkohlenstoff hat also an Carbeniumcharakter gewonnen.

Weitere Bisazomethinimin-Dipole 15 resultieren aus der Umsetzung der Diazoverbindungen 1a, c, d und i mit dem Bistriazoldion 14; auch diese sind analytisch und spektroskopisch abgesichert (s. Tab. 6 und 7). Herausgegriffen seien die Methylensinguletts der ¹H-NMR-Spektren (CDCl₃) bei $\delta = 4.02$ sowie die ¹³C-NMR-Absorptionen (CDCl₃) der Azomethinkohlenstoffe von 15a und b ($\delta = 194.9$ bzw. 190.2), die erneut – relativ zu 4a und c – tieffeldverschoben sind.

Dem Fonds der Chemischen Industrie danken wir für finanzielle Unterstützung. – Frau M. Alester schulden wir Dank für die Durchführung der Elementaranalysen.

Experimenteller Teil

Schmelzpunkte (unkorrigiert): Mettler FP 61 bzw. FP 5 (Aufheizgeschwindigkeit 1 °C/min). – IR-Spektren: Beckman IR-20A. – UV-Spektren: CMR 10, Zeiss. – ¹H-NMR-Spektren: Varian EM 390 und Bruker WP 200 (Tetramethylsilan als innerer Standard). – ¹³C-NMR-Spektren: Bruker WP 200 (Tetramethylsilan als innerer Standard). – Elementaranalysen: Perkin-Elmer Analyser 240. – Alle verwendeten Lösungsmittel waren wasserfrei.

-1,2,4-triazolidin-1-id		Ausb. [%]	ZersP. [°C] (Farbe)	Summenformel (Molmasse) ^{a)}		C Ana	lyse ^{b)} H N
3,5-Dioxo-2-(2-oxo-1,2-di- <i>p</i> -tolylethylio)-4-phenyl-	(4a)	81	129 (orange)	$C_{24}H_{19}N_3O_3$ (397.4)	Ber. Gef.	72.53 4 71.5 4	.82 10.57 .98 10.6
 2-[1, 2-Bis(4-methoxyphenyl)-2-oxoethylio]-3,5-dioxo-4- phenyl- 	(4b)	74	144 (orange)	$C_{24}H_{19}N_3O_5$ (429.4)	Ber. Gef.	67.13 4 65.7 4	.46 9.79 .59 9.8
3,5-Dioxo-2-(2-oxo-1,2-diphenylethylio)-4-phenyl-	(4c)	82	170 (gelb)	C ₂₂ H ₁₅ N ₃ O ₃ (369.4)	Ber. Gef.	71.53 4 70.8 4	.09 11.38 .34 11.6
2-(9,10-Dihydro-10-oxo-9-anthracenylio)-3,5-dioxo- 4-phenyl	(4d)	87	149 (violett)	C ₂₂ H ₁₃ N ₃ O ₃ (367.4)	Ber. Gef.	71.93 3 71.9 3	.57 11.14 .85 11.3
3,5-Dioxo-4-phenyl-2-(9 <i>H</i> -thioxanthen-9-ylio)10,10- dioxid	(4e)	78	170 (orange)	$C_{21}H_{13}N_3O_4S$ (403.4)	Ber. Gef.	62.52 3 61.1 3	.25 10.42 .29 10.1
2-(5H-Dibenzo[a,d]cyclohepten-5-ylio)-3,5-dioxo-4- phenyl-	(4f)	82	191 (orangerot)	$C_{23}H_{15}N_3O_2$ (365.4)	Ber. Gef.	75.60 4 75.4 4	.14 11.50 .32 11.6
2-(10,11-Dihydro-5H-dibenzo[a, d]cyclohepten-5-ylio)- 3,5-dioxo-4-phenyl-	(4g)	91	176 (orange)	C ₂₃ H ₁₇ N ₃ O ₂ (367.4)	Ber. Gef.	75.19 4 75.1 4	.66 11.44 .80 11.5
3,5-Dioxo-2-(2-oxo-1,2-diphenylethylio)-4- <i>p</i> -tolyl-	(4 h)	82	165 (orange)	C ₂₃ H ₁₇ N ₃ O ₃ (383.4)	Ber. Gef.	72.05 4 72.3 4	.47 10.96 .64 11.1
2-(9,10-Dihydro-10-oxo-9-anthracenylio)-3,5-dioxo- 4- <i>p</i> -tolyl-	(4i)	86	152 (violett)	C ₂₃ H ₁₅ N ₃ O ₃ (381.4)	Ber. Gef.	72.43 3 72.1 4	.96 11.02 .12 11.2
3,5-Dioxo-2-(9 <i>H</i> -thioxanthen-9-ylio)-4- <i>p</i> -tolyl10,10- dioxid	(4 j)	81	180 (rot)	$C_{22}H_{15}N_{3}O_{4}S$ (417.4)	Ber. Gef.	63.30 3 62.6 3	.62 10.07 .72 9.7
2-(10,11-Dihydro-5 <i>H</i> -dibenzo[<i>a</i> , <i>d</i>]cyclohepten-5-ylio)- 3,5-dioxo-4- <i>p</i> -tolyl-	(4k)	72	158 (gelb)	$C_{24}H_{19}N_{3}O_{2}$ (381.4)	Ber. Gef.	75.57 5 74.5 5	02 11.02
2-(Diphenylmethylio)-3,5-dioxo-4-p-tolyl-	(41)	76	166 (dunkelrot)	C ₂₂ H ₁₇ N ₃ O ₂ (355.4)	Ber. Gef.	74.35 4 73.9 4	82 11.82 86 11.8
4-Methyl-3,5-dioxo-2-(2-oxo-1,2-diphenylethylio)-	(4 m)	82	160 (orangerot)	C ₁₇ H ₁₃ N ₃ O ₃ (307.3)	Ber. Gef.	66.45 4 65.9 4	26 13.67 39 13.4
4-Methyl-3,5-dioxo-2-(9H-thioxanthen-9-ylio)10,10- dioxid	(4n)	70	189 (rot)	C ₁₆ H ₁₁ N ₃ O ₄ S (341.4)	Ber. Gef.	56.30 3 55.9 3.	25 12.31 61 11.9
2-(10,11-Dihydro-5H-dibenzo[a,d]cyclohepten-5-ylio)- 4-methyl-3,5-dioxo-	(40)	79	185 (gelb)	C ₁₈ H ₁₅ N ₃ O ₂ (305.3)	Ber. Gef.	70.81 4 70.4 5	95 13.76 03 13.8
2-(Diphenylmethylio)-4-methyl-3,5-dioxo-	(4 p)	84	196 (orangerot)	C ₁₆ H ₁₃ N ₃ O ₂ (279.3)	Ber. Gef.	68.81 4 68.2 4	69 15.05 75 15.5
^{a)} Die folgenden Molmassen wurden dampfdruckosmometrisch gleichsweise schwer verbrennbar, was nicht immer zu optimaler	bestimmt (C n Analysenw	(H ₂ Cl ₂): 4 crten fühl	d: 365.0; 4e: 411.1 1.	l; 4f: 364.0; 4g: 368.0	Д (q –	ie Dipole	sind ver-

Tab. 1. Analytische Daten der Dipole 4a-p

			· (VD=) [-11		LIV [mmla)
4	V _(CH)	$V_{(C=O)}$	V(C = C)	- J V(N – R)	V _(CO - N)	λ_{max} (lge)
a	2920 - 3060	1674 1727 1804	1573 1604	1500	1392	268 (4.2) 425 (3.9)
b	2850 - 3100	1658 1711 1794	1573 1598	1500	1391 1423	296 (4.3) 437 (3.9)
c	3065	1676 1727 1813	1568 1581 1597	1501	1396 1420	255 (4.1) 420 (3.9)
d	3060	1660 1718 1772	1590	1500	1386	360 (2.9) 505 (3.1)
e	3020 - 3100	1715 1815	1573	1500	1387	460 (3.9) 355 (3.7) 270 (3.7)
f	3060	1710 1790	1594	1498	1375	258 (2.6) 430 (2.8)
g	2850-3100	1710 1805	1600	1498	1383	345 (2.9) 407 (3.0)
h	3060	1671 1723 1792	1579 1593	1510	1393	b)
i	3063	1666 1718 1779	1588	1512	1385	b)
j	3020 - 3090	1731 1835	1585	1510	1400	b)
k	2850 - 3050	1710 1801	1600	1515	1394	b)
1	2950 - 3050	1718 1795	1600	1520	1400	b)
m	3079	1677 1721 1816	1600	1440	1390	b)
n	2870 - 3100	1720 1838	1578	1448	1392	b)
0	2850 - 3180	1711 1808	1598	1445	1382	255 (2.9) 270 (2.9) 405 (3.0)
p	2920 - 3060	1715 1810	1592	1450	1397	b)

Tab. 2. IR- und UV(VIS)-spektroskopische Daten der Dipole 4a - p

^{a)} 4a - c in CH_2Cl_2 , 4d - g und o in $CHCl_3$. - ^{b)} Auf die Messung der UV-Spektren wurde verzichtet.

Ausgangsverbindungen: Alle Diazoverbindungen sind literaturbekannt: $1a^{15}$, $1b^{16}$, $1c^{17}$, $1d^{18}$, $1e^{18}$, $1f^{19}$, $1g^{20}$, $1h^{21}$, $1i^{22}$, $12a^{23}$, $12b^{24}$). Die Triazoldione $2a^{25}$, $2c^{26}$ und 14^{27} sind bekannt.

4-p-Tolyl-3H-1,2,4-triazol-3,5(4H)-dion (2b): Zu der auf 0 °C gekühlten Suspension von 3.82 g (20.0 mmol) 4-p-Tolylurazol²⁸⁾ in 200 ml Dichlormethan gibt man unter Rühren portionsweise 7.12 g (40.0 mmol) N-Bromsuccinimid. Man rührt noch 1 h bei 0 °C, extrahiert die rote Lösung

	Tab.	3. NMR-Spektroskopische Date	en der Dipole 4a-	d -		
4	¹ H-NMR (CDCl ₃ , δ in ppm) Aromaten-H	Sonstige Signale	Aromaten-C	¹³ C-NMI >C-N	k (CDCl ₃ , CO-Imid	<pre>& in ppm) Sonstige Signale</pre>
a,	7.25 - 7,60 (m, 9H, Aroyl/N-Phenyl), 7.71 - 8.63 (AA'XX'-System, 4H, @C-Aryl)	2.40, 2.46 (s, 6H, CH ₃)	125.3 - 134.3	187.0	146.4, 147.6	21.9, 22.2 (CH ₃), 199.2 (CO-Aroyl)
٩	6.87 – 7.65 (m, 9H, Aroyl/N-Phenyl), 7.81 – 8.80 (AA'XX'-System, 4H, ⊕C-Aryl)	3.84, 3.93 (s, 6H, OCH ₃)	$\begin{array}{c} 113.7-115.5,\\ 125.5-137.9,\\ 165.3,\ 165.9\end{array}$	161.0	146.5, 151.2	55.4, 55.7 (OCH ₃), 199.2 (CO-Aroyl)
J	7.34 – 7.38 (m, 10H, Benzoyl/N-Phenyl), 7.91 – 8.78 (m, 5H, ⊕C-Phenyl)	(.	125.2 - 135.2	188.0	144.7, 150.5	199.1 (CO-Benzoyl)
P	7.20–8.50 (m, 13H)		124.5-137.5	150.4	153.3, 154.1	181.3 (C-10)
e	7.00–8.70 (m, 13H)	I	a)			
ι.	7.30–8.30 (m, 13H)	7.20 (s, 2H, olefin. H)	125.4 - 134.0	149.6	150.2, 157.5	þ)
54	6.90-8.25 (m, 13H)	2.70-3.65 (AA'BB'-System, 4H, 10-, 11-H)	125.0 - 139.0	157.5	149.9, 155.2	31.5, 33.0 (C-10/C-11)
ч	7.17-7.70 (m, 9H, Benzoyl/N-Tolyl), 7.86-8.70 (m, 5H, [⊕] C-Phenyl)	2.32 (s, 3H, CH ₃)	125.3 - 139.4	187.9	154.0, 156.0	21.2 (CH ₃), 195.1 (CO-Benzoyl)
•=	7.18–8.50 (m, 12H)	2.33 (s, 3H, CH ₃)	a)			
,	7.20-8.20 (m, 12H)	2.36 (s, 3H, CH ₃)	а)			
¥	7.10-8.05 (m, 12H)	2.33 (s, 3H, CH ₃), 3.15 (s, 4H, 10-, 11-H)	c)			
-	6.90-8.22 (m, 14H)	2.30, 2.34 (s, 3H, CH ₃)	c)			
E	7.27 – 7.65 (m, 5 H, Benzoyl), 7.75 – 8.60 (m, 5 H, ⊕C-Phenyl)	2.97, 3.12 (s, 3H, CH ₃)	129.1 – 135.4	188.1	147.0, 151.8	26.5 (CH ₃), 198.0 (CO-Benzoyl)
u	7.30-8.20 (m, 8H)	3.24 (s, 3H, CH ₃)	a)			
0	7.15 – 8.20 (m, 8 H)	2.75 – 3.65 (AA'BB'-System, 4H, 10-, 11-H), 3.12 (s, 3H, CH ₃)	125.8 - 139.0	159.3	151.2, 154.5	26.2 (CH ₃), 31.5, 33.1 (C-10/C-11)
d	7.16 – 8.12 (m, 10H)	2.82, 3.15 (s, 3H, CH ₃)	c)			
a) Weger	ı Schwerlöslichkeit konnte kein ¹³ C-NMR-Sp – ° Auf die Aufnahme eines ¹³ C-NMR-Sp	ektrum aufgenommen werden ektrums wurde verzichtet	 b) Die olefinische 	en Kohlen:	stoffe sind	nicht von Aromaten-C zu se

36

viermal mit je 50 ml Wasser, trocknet die organische Phase über Magnesiumsulfat und dampft bei 30 °C/20 Torr ein. Ausb. 3.50 g (93%) **2b** als purpurfarbene Kristalle vom Zers.-P. 159 – 162 °C (Sublimation bei 80 °C/0.02 Torr). – IR (KBr): 1784, 1766 cm⁻¹ (C = O).

C₉H₇N₃O₂ (189.2) Ber. C 57.13 H 3.73 N 22.21 Gef. C 57.0 H 3.88 N 22.4

Dipole

Allgemeine Vorschrift zur Herstellung der Dipole $4\mathbf{a} - \mathbf{p}$: Zu 20 mmol Diazoverbindung $1\mathbf{a} - \mathbf{h}$ in 100 ml Benzol tropft man bei Raumtemp. während 5 h 20 mmol Triazoldion 2 in 200 ml Benzol, wobei die Dipole $4\mathbf{d} - \mathbf{g}$, $\mathbf{i} - \mathbf{k}$, \mathbf{n} und \mathbf{o} auskristallisieren. Sie werden abgesaugt und mehrmals mit je 20 ml Ether gewaschen. Im Fall der Dipole $4\mathbf{a} - \mathbf{c}$, \mathbf{h} , \mathbf{h} und \mathbf{p} wird das Lösungsmittel bei 30 °C/20 Torr entfernt und der Rückstand mehrmals mit je 20 ml Ether digeriert. Alle Dipole stellen farbige Pulver dar und fallen analysenrein an. Analytische Daten s. Tab. 1, IR-, UV-, ¹H-NMR- und ¹³C-NMR-spektroskopische Daten s. Tab. 2 und 3.

Reaktionen der Dipole

Allgemeine Vorschrift zur Umsetzung der Dipole 4d - f mit Methanol: 5.0 mmol Dipol 4d - fwerden in 50 ml Methanol 10 min bei Raumtemp. gerührt, wobei sich unter Entfärbung die Urazole 5a - c abscheiden. Nach Absaugen wird mit 10 ml Methanol gewaschen und aus den in Tab. 4 angegebenen Lösungsmitteln umkristallisiert. Die analytischen Werte sind in Tab. 4, die spektroskopischen Daten in Tab. 5 zusammengestellt.

Allgemeine Vorschrift zur Umsetzung der Dipole 4d - f mit Ethanol: 5.0 mmol Dipol 4d - fwerden in 20 ml Dichlormethan/10 ml Ethanol 15 min bei Raumtemp. gerührt, bei 30°C/20 Torr bis auf etwa die Hälfte eingeengt und langsam mit 10 ml Ether versetzt, wobei die Urazole 5d - fauskristallisieren. Nach Absaugen wird mit 10 ml Ethanol gewaschen und aus den in Tab. 4 angegebenen Lösungsmitteln umkristallisiert. Die analytischen Werte sind in Tab. 4, die spektroskopischen Daten in Tab. 5 zusammengestellt.

2',4',10-Trioxo-3'-phenylspiro[anthracen-9(10H),6'-[1,3,5]triazabicyclo[3.3.0]oct-[7]en]-7',8'dicarbonsäure-dimethylester (**6a**): 1.00 g (2.74 mmol) **4d** werden mit 1.42 g (10.00 mmol) Acetylendicarbonsäure-dimethylester in 150 ml Benzol 3 h unter Rückfluß erhitzt, wobei sich die Lösung entfärbt. Nach Abkühlen und Eindampfen bei 30°C/20 Torr verbleibt rohes **6a**. Ausb. 0.72 g (52%) farblose Kristalle vom Schmp. 235°C (aus Aceton). – IR (KBr): 2950–3060 (CH), 1670, 1740, 1790 (CO), 1585, 1600 (C=C), 1495 (N-Phenyl), 1390 cm⁻¹ (CO–N). – ¹H-NMR (CDCl₃): δ = 3.35, 4.05 (jeweils s, 6H, OCH₃), 7.30–8.50 (m, 13H, Aromaten-H). – ¹³C-NMR (CDCl₃): δ = 52.4, 54.3 (C-Methyl), 70.0 (*spiro*-C), 120.3–138.7 (Aromaten-C), 146.9, 148.3 (CO-Imid), 158.3, 159.9 (CO-Ester), 181.8 (CO-Anthron).

C₂₈H₁₉N₃O₇ (509.5) Ber. C 66.01 H 3.72 N 8.25 Gef. C 65.7 H 4.02 N 8.3

2',4'-Dioxo-3'-phenylspiro[9H-thioxanthen-9,6'-[1,3,5]triazabicyclo[3.3.0]oct-[7]en]-7',8'-dicarbonsäure-dimethylester-10,10-dioxid (**6b**): Aus 1.00 g (2.43 mmol) **4e** und 1.42 g (10.00 mmol) Acetylendicarbonsäure-dimethylester erhält man analog **6a** (vorstehend) 0.64 g (48%) farbloses **6b** vom Zers.-P. 263 °C (aus Acetonitril). – IR (KBr): 2960–3060 (CH), 1715, 1744, 1770, 1790 (CO), 1625 (C=C), 1494 (N-Phenyl), 1396 (CO–N), 1160, 1300 cm⁻¹ (SO₂). – ¹H-NMR ([D₆]DMSO): δ = 3.40, 4.00 (jeweils s, 6H, OCH₃), 7.30–8.30 (m, 13H, Aromaten-H).

C₂₇H₁₉N₃O₈S (545.4) Ber. C 59.45 H 3.51 N 7.70 Gef. C 59.3 H 3.59 N 7.8

3',7'-Diphenylspiro[anthracen-9(10H),2'-[1,3,5,7]tetraazabicyclo[3.3.0]octan]-4',6',8',10-tetron (7): 1.85 g (5.00 mmol) 4d werden mit 2.38 g (20.00 mmol) Phenylisocyanat in 200 ml Benzol 3 h unter Rückfluß erhitzt, wobei sich die Lösung entfärbt. Nach Abkühlen auf Raumtemp. werden 0.70 g einer nicht identifizierten blaßgelben Verbindung (Schmp. > 300°C) abfiltriert und das Filtrat bei 30°C/20 Torr auf etwa 50 ml eingeengt. Nach 24 h erhält man 0.51 g (21%) 7 als hellgelbe

				Tab. 4	. Analytische I	Daten der Urazole 5a-1	-	
	-4-phenyl-1,2,4-triazoli	din-3,5-dion			Ausbeute [%]	ZersP. [°C] (umkrist. aus)	Summenformel (Molmasse)	C H N
-	-(9,10-Dihydro-9-meth cenyl)-	оху-10-охо-9	-anthra-	(5a)	53	206 (Chloroform)	C ₂₃ H ₁₇ N ₃ O ₄ (399.4)	Ber. 69.10 4.29 10.50 Gef. 68.7 4.46 10.4
Ē	-(9-Methoxy-9H-thioxa 10,10-dioxid	Inthen-9-yl)	:	(5b)	83	226 (Chloroform)	C ₂₂ H ₁₇ N ₃ O ₅ S (435.5)	Ber. 60.60 3.93 9.60 Gef. 60.6 4.09 9.5
-	-(5-Methoxy-5H-diben: 5-yl)-	zo[<i>a,d</i>]cycloł	iepten-	(5 c)	81	187 (Methanol)	C ₂₄ H ₁₉ N ₃ O ₃ (397.4)	Ber. 72.50 4.81 10.57 Gef. 71.9 4.85 10.8
-	-(9-Ethoxy-9,10-dihydr cenyl)-	о-10-охо-9-а	nthra-	(2 d)	76	193 (Chloroform)	C ₂₄ H ₁₉ N ₃ O ₄ (413.4)	Ber. 69.72 4.63 10.16 Gef. 69.8 4.79 10.0
-	-(9-Ethoxy-9H-thioxan 10,10-dioxid	then-9-yl)	١.	(5 e)	80	208 (DMF/Ether)	C ₂₃ H ₁₉ N ₃ O ₅ S (449.5)	Ber. 61,46 4.26 9.35 Gef. 61.0 4.36 9.4
1	-(5-Ethoxy-5H-dibenzo 5-yl)-	[a,d]cyclohe]	pten-	(5 f)	88	214 (DMSO/Ether)	C ₂₅ H ₂₁ N ₃ O ₃ (411.5)	Ber. 72.98 5.14 10.21 Gef. 72.4 5.18 10.1
				Tab. 5. SJ	pektroskopisch	le Daten der Urazole 5a	- f	
3	Lösungsmittel	¹ H-NM OCH ₃ bzw. OCH ₂	IR (δ in CH ₃	ppm) NH ^{a)}	Son	stige Signale	IR ()	KBr) [cm ⁻¹]
n	CDCl ₃	3.02 (s)	I	(9	7.10 - 8.40 (1	m, 13H, Aromaten-H)	3240 (NH), 2840 – 29 1775 (C = O), 1590, 1 1410 (CO – N)	30 (CH), 1660, 1715, 600 (C = C), 1500 (<i>N</i> -Phenyl),
q	CDCl ₃ /[D ₆]DMSO (1:1)	3.30 (s)	I	11.00 (breit)	7.10-8.20 (1	m, 13H, Aromaten-H)	3440 (NH), 3060 (CH 1502 (N-Phenyl), 143	I), 1705, 1770 (C = O), 0 (CO – N), 1169, 1308 (SO,)
J	CDCl ₃ /[D ₆]DMSO (1:1)	3.70 (s)	I	(9	7.20 (s, 2H, 7.22-8.00 (1	olefin. H), m, 13 H, Aromaten-H)	3430 (NH), 2820-30 1600 (C=C), 1500 (N	60 (CH), 1695, 1765 (C = O), 4-Phenyl), 1430 (CO – N)
p	CDCI ₃	3.09 (q)	1.13 ^{c)} (1)	9.15 (breit)	7.20 – 8.20 (I	m, 13 H, Aromaten-H)	3450 (NH), 2890–30 1770 (C = O), 1598 (C 1420 (CO – N)	65 (CH), 1670, 1705, C = C), 1500 (<i>N</i> -Phenyl),
ه	[D ₆]DMSO	3.38 (q)	1.10 ^{c)} (t)	11.00 (breit)	7.00-8.10 (r	n, 13H, Aromaten-H)	3440 (NH), 2900 – 30' 1502 (N-Phenyl), 144'	70 (CH), 1695, 1763 (C = O), 2 (CO – N), 1170, 1304 (SO ₂)
Ŧ	[D ₆]DMSO	3.80 (q)	1.50c) (1)	10.10 (breit)	7.10-8.10 (r und olefin. F	n, 15H, Aromaten-H J)	3420 (NH), 286031(1495 (N-Phenyl), 142(00 (CH), 1690, 1772 (C=O), 0 (CO-N)
a) Ver	schwindet beim Deuteri	eren mit D ₂ C	V (q(Vicht separ	rierbar, da von	Aromatensignalen über	rlagert. $-c^{3}J_{H,H} = 6$.0 (5d), 7.0 (5e), 6.4 Hz (5f).

					Tal	b. 6. Analytische	Daten der Bis	dipole 15a-d					
	4,4'-(Methyle	ndi-4,1- _I	phenylen).			Ausb. [%]	ZersP. [°C] (Farbe)	Summenforr (Molmasse	nel ()		Analyse C H N	
-bis[3 azo	.5-dioxo-2-(2 lidin-1-id]	-oxo-1,2	di- <i>p</i> -to	lylethylio)	-1,2,4-tri-	(15a)	75	157 (orange-gelb)	C ₄₉ H ₃₈ N ₆ C (806.9)	هر	Ber. 72 Gef. 72	.94 4.75 10.42 .3 5.15 10.5	
-bis[3 azo	,5-dioxo-2-(2 lidin-1-id]	-oxo-1,2	-diphen	ylethylio)-	-1,2,4-tri-	(15b)	74	181 (gelb)	C ₄₅ H ₃₀ N ₆ C (750.8))6	Ber. 71 Gef. 72	.99 4.03 11.19 .2 4.40 10.4	
-bis[2 1,2,	-(9,10-dihydr 4-triazolidin	ro-10-ox -1-id]	o-9-anth	racenylio))-3,5-dioxo	- (15c)	83	165 (violett)	C ₄₅ H ₂₆ N ₆ C (746.7)) ₆	Ber. 72 Gef. 72	.38 3.51 11.26 .7 3.85 11.2	
-bis[2 1-id	-(9H-fluoren]	-9-ylio)-	3,5-diox	o-1,2,4-tri	iazolidin-	(15d)	77	180 (dunkelrot)	C ₄₃ H ₂₆ N ₆ C (690.7)	4	Ber. 74 Gef. 74	.78 3.79 12.17 .2 4.07 12.2	
					Tab.	7. Spektroskopisch	ie Daten der J	Bisdipole 15 a – d					
15	V(CH)	IR (K V(CO)	Br) [cm ⁻ V(c=0,	-1] V(<i>N</i> -Phenyl)	V(CO-N)	¹ H-NN Aromate	IR (CDCl ₃ , § n-H	in ppm) Sonstige Signale	¹³ C-NN Aromaten-C	AR (CD	CO-Imid	ppm) Sonstige Signale	
æ	2920 bis 3050	1720 1770 1855	1570 1602	1511	1390	7.10 – 7.60 (m, 1 7.70 – 8.65 (AA') 8H, C [⊕] – Aryl)	6 H), KX'-System,	2.40, 2.45 (jeweils s, 12H, CH ₃), 4.02 (s, 2H, CH ₅ -Brücke)	125.8 bis 136.6	194.9	141.1 146.4	21.2, 21.9 (CH ₃), 41.0 (CH ₂ -Brücke)	
٩	3000 bis 3100	1740 1787 1854	1577 1596	1511	1388	6.95–7.57 (m, 2)	8H)	4.02 (s, 2H, CH ₂ -Brücke)	100.6, 105.1, 125.9 bis 141.4	190.2	147.1 154.4	41.1 (CH ₂ - Brücke), 199.5 (CO- Benzoyl)	
J	2880 bis 3100	$1671 \\ 1718 \\ 1779$	1589	1512	1383 1415	7.15 – 8.50 (m, <i>2</i> ,	4H)	4.02 (s, 2H, CH ₂ -Brücke)			a)		
р	2920 bis 3090	1717 1770	1598 1607	1511	1407	6.85 – 7.55 (m, 2 ⁴	4H)	4.02 (s, 2H, CH ₂ -Brücke)			a)		
a) We	gen Schwerlö	slichkeit	konnte	kein ¹³ C-	NMR-Spel	ttrum aufgenomm	en werden.						

Kristalle vom Zers.-P. 285 °C (aus Benzol). – IR (KBr): 3000-3100 (CH), 1675, 1755, 1812 (CO), 1590, 1600 (C=C), 1490 (N-Phenyl), 1400 cm⁻¹ (CO-N). – ¹H-NMR (CDCl₃/[D₆]DMSO, 1:1): $\delta = 6.55-8.60$ (m, Aromaten-H).

C₂₉H₁₈N₄O₄ (486.5) Ber. C 71.60 H 3.73 N 11.50 Gef. C 71.5 H 3.94 N 11.5

40 aus **4g** und Methylisocyanat: 0.60 g (1.63 mmol) **4g** in 30 ml Benzol/7 ml Methylisocyanat werden 12 h unter Rückfluß erhitzt, wobei die Farbe von Orange nach Gelb umschlägt. Nach Abkühlen und Einengen bei 30° C/20 Torr erhält man 0.48 g (96%) gelbe Kristalle vom Zers.-P. 185 °C. Misch.-Schmp. und IR-Vergleich mit dem aus **1g** und **2c** erhaltenen Dipol.

Bisdipole

2,2⁻[1,4-Phenylenbis(phenylmethylio)]bis(3,5-dioxo-4-phenyl-1,2,4-triazolidin-1-id) (13a): Zu der Lösung von 0.45 g (1.48 mmol) 12a in 130 ml Benzol tropft man unter Rühren bei Raumtemp. 0.56 g (3.00 mmol) 2a in 90 ml Benzol und dampft nach weiteren 30 min bei 30°C/20 Torr ein. Der Rückstand wird mehrmals mit je 20 ml Ether behandelt, wobei man 0.71 g (80%) 13a als orangerotes Pulver vom Zers.-P. 145°C erhält. – IR (KBr): 3020–3100 (CH), 1719, 1781 (CO), 1598 (C = C), 1500 (N-Phenyl), 1411 cm⁻¹ (CO – N). – UV (CH₂Cl₂): λ_{max} (lg ε) = 253 (3.9), 320 (2.7), 447 nm (3.8). – ¹H-NMR (CDCl₃): δ = 7.10–7.78 (m, Aromaten-H). – ¹³C-NMR (CDCl₃): δ = 125.6–138.3 (Aromaten-C), 153.2, 154.2 (CO-Imid), 199.1 ($\bigcirc^{C} - N \le$).

C36H24N6O4 (604.6) Ber. C 71.51 H 4.00 N 13.90 Gef. C 71.6 H 4.76 N 13.7

2,2'-[1,3-Phenylenbis(phenylmethylio)]bis(3,5-dioxo-4-phenyl-1,2,4-triazolidin-1-id) (13b): Aus 0.43 g (1.42 mmol) 12b und 0.53 g (2.84 mmol) 2a erhält man analog 13a (vorstehend) 0.76 g (88%) 13b als oranges Kristallpulver vom Zers.-P. 138°C. – IR (KBr): 3000 – 3090 (CH), 1732, 1773 (CO), 1598 (C=C), 1500 (N-Phenyl), 1398, 1411 cm⁻¹ (CO-N). – UV (CH₂Cl₂): λ_{max} (lg ε) = 250 (3.8), 320 (3.4), 443 nm (3.5). – ¹H-NMR (CDCl₃): δ = 7.10–7.78 (m, Aromaten-H). – ¹³C-NMR (CDCl₃): δ = 125.5–137.3 (Aromaten-C), 153.0, 154.8 (CO-Imid), 199.1 (Σ ^C – N ζ).

C₃₆H₂₄N₆O₄ (604.6) Ber. C 71.51 H 4.00 N 13.90 Gef. C 70.5 H 4.46 N 13.8

Allgemeine Vorschrift zur Herstellung der Bisdipole 15a - d: Zu 10.00 mmol Diazoverbindung 1a, c, d und i in 50 ml Benzol tropft man bei Raumtemp. innerhalb 2 h 1.82 g (5.00 mmol) Bis(triazoldion) 14 in 100 ml Benzol, wobei 15c und d unmittelbar aus der Reaktionslösung auskristallisieren. Sie werden abgesaugt und mehrmals mit je 30 ml Ether nachgewaschen. Im Fall von 15aund b wird das Lösungsmittel bei $30^{\circ}C/20$ Torr entfernt und der Rückstand mehrmals mit je 30 ml Ether digeriert. Die analytischen Werte sind in Tab. 6, die spektroskopischen Daten in Tab. 7 zusammengestellt.

LI. Mitteil.: M. Böhshar, G. Maas, H. Heydt und M. Regitz, Tetrahedron 1984 (im Druck).
 Zusammenfassungen: E. Fahr und H. Lind, Angew. Chem. 78, 376 (1966); Angew. Chem.,

Int. Ed. Engl. 5, 372 (1966); I. K. Korobizina und L. L. Rodina, Z. Chem. 20, 172 (1980).

³⁾ Kurzmitteilung: W. Bethäuser, M. Regitz und W. Theis, Tetrahedron Lett. 1981, 2535.

⁴⁾ G. F. Bettinetti und L. Capretti, Gazz. Chim. Ital. 95, 33 (1965).

⁵⁾ W. Ried und S. H. Lim, Liebigs Ann. Chem. 1973, 1141.

⁶⁾ Unabhängig von uns (vgl. Lit.³⁾) wurde kürzlich der Dipol **4d** sowie einige weitere arylsubstituierte Vertreter des gleichen Typs auch von anderer Seite beschrieben: *I. K. Korobizina, L. L. Rodina* und *A. V. Lorkina*, Zh. Org. Khim. **18**, 1119 (1982) [Chem. Abstr. **97**, 109936p (1982)] sowie *L. L. Rodina, A. V. Lorkina* und *I. K. Korobizina*, Zh. Org. Khim. **18**, 1986 (1982) [Chem. Abstr. **98**, 16625s (1983)].

⁷⁾ R. Huisgen, Angew. Chem. **75**, 604 (1963); Angew. Chem., Int. Ed. Engl. **2**, 565 (1963).

- ⁸⁾ Die aus Phosphoryl- und Carbonyldiazoverbindungen mit Wasserstoff oder Alkylgruppen als Zweitsubstituenten und Triazoldionen entstehenden Dipole sind nicht mehr isolierbar, können aber durch Abfangreaktionen mit Ethanol gemäß $4 \rightarrow 5$ nachgewiesen werden: W. Theis, W. Bethäuser und M. Regitz, Tetrahedron 1984 (im Druck).
- 9) Zur Methode s. U. Rapp, G. Meyerhoff und G. Dielmann, Österr. Z. Chem. 1980, 4. Herrn Dr. U. Rapp (Finnigan MAT GmbH, Bremen) danken wir für die Messung.
- ¹⁰ G. Hedestrand, Z. Phys. Chem. B 2, 428 (1929); s. auch C. J. F. Böttcher, Theory of Electric Polarization, 1. Aufl., Elsevier, Amsterdam 1973. ¹¹⁾ E. Breitmaier und G. Bauer, ¹³C-NMR-Spektroskopie, 1. Aufl., S. 44, Thieme, Stuttgart
- 1977.
- 12) S. Lit. 11), S. 48.
- 13) D. W. Jones, J. Chem. Soc., Chem. Commun. 1982, 766.
- 14) W. J. S. Lockley, V. T. Ramakrishnan und W. Lwowski, Tetrahedron Lett. 1974, 2621.
- 15) T. Curtius und R. Kastner, J. Prakt. Chem. 83, 222 (1911).
- ¹⁶⁾ H. Droescher und E. F. Jenny, Helv. Chim. Acta 51, 643 (1968).
- 17) H. Morrison, S. Danishefsky und P. Yates, J. Org. Chem. 26, 2617 (1961).
- 18) M. Regitz, Chem. Ber. 97, 2742 (1964).
- ¹⁹⁾ S. J. Murahashi, J. Moritani und M. Nishino, Tetrahedron 27, 5131 (1971).
- ²⁰⁾ J. Moritani, S. J. Murahashi, K. Yoshinaga und H. Ashitaka, Bull. Chem. Soc. Jpn. 40, 1506 (1967).
- ²¹⁾ L. I. Smith und K. L. Howard, Org. Synth., Coll. Vol. 3, 351 (1955).
- ²²⁾ A. Schönberg, W. J. Awad und N. Latif, J. Chem. Soc. 1951, 1368.
- ²³⁾ R. W. Murray und A. M. Trozzolo, J. Org. Chem. 26, 3109 (1961).
 ²⁴⁾ R. W. Murray und A. M. Trozzolo, J. Org. Chem. 29, 1268 (1964).

- ²⁵⁾ H. Wamhoff und K. Wald, Org. Prep. and Proc. Int. 7, 251 (1975).
 ²⁶⁾ R. C. Cookson, S. S. Gupte, I. D. R. Stevens und C. T. Watts, Org. Synth. 51, 121 (1971).
- ²⁷⁾ B. Saville, J. Chem. Soc., Chem. Commun. 12, 635 (1971).
- ²⁸⁾ In Analogie zum Phenylurazol²⁶⁾ hergestellt.

[412/83]